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1. INTRODUCTION 
Per the AAA Foundation for Traffic Safety, motor vehicle crashes were the leading cause of death for 
people aged 16-24 for each year from 2012 through 2014,i and 6.3million traffic crashes were reported 
across the United States in 2015, [up slightly from 6 million in 2014], involving 11.3 million vehicles.ii 
Almost 50% of all vehicles involved in crashes in 2015 were involved in crashes at intersections,iii 
underscoring the importance of safety controls and enforcement at junctions points throughout the 
roadway system.  
 
As natural points of intermodal interaction and directional conflict, intersections are the sites of most traffic 
crashes in Philadelphia County: between 2012 and 2016, 32,000 crashes (57% of all crashes in 
Philadelphia) occurred at an intersection.iv During that same period, crashes in which a driver ran a red 
light accounted for 40% of all reportable crashes in Philadelphia.v AAA’s 2016 Traffic Safety Culture Index 
reports that most drivers (82.8% of those surveyed) consider it unacceptable for a driver to run a red light, 
but more than 1 in 3 drivers (35.5%) admitted to having driving through a light that had just turned red in 
the past 30 days when they could have stopped safely.vi This indicates that in the absence of 
enforcement, red light running remains an acceptable option for many drivers.  
 
Angle Crashes vs. Rear-End Crashes 
Angle crashes are defined as crashes in which vehicles on opposite roadways collide at a point of 
junction, such as a road intersection, driveway, or entrance ramp. These include “T-bone” crashes as well 
as right-turn and left-turn crashes. A large body of research undertaken by national policy organizations, 
think-tanks, academic researchers, and agencies indicates that Angle crashes are some of the most 
severe, deadly kind of crashes that occur in the United States, especially compared to rear-end collisions.  
 
NHTA’s 2015 Traffic Safety Facts FARS/GES Annual Report indicates that 14.9% of all fatal Passenger 
car crashes in 2015 were either left side or right-side angle crashes, while only 1.7% of all fatal crashes 
were rear collisions. For light trucks (which includes SUVs and pickups), 10.9% of all fatal crashes were 
right or left side angle crashes, while rear collisions accounted for 1.4% of all fatal crashes. For large 
trucks (tractor-trailers), 12.8% of fatal crashes were left or right-angle crashes, and 5.0% of crashes were 
rear-end collisions. For motorcycles, 24.5% of fatal crashes in 2015 were the result of right or left angled 
collisions, and only 0.4% of all fatal crashes were the result of rear collisions.vii 
 
The same report also indicates that in 2015, Angle crashes resulted in more fatalities than any other type 
of crash involving two vehicles, and resulted in the second-highest number of injuries from crashes. This 
data set indicates that while rear-end crashes resulted in more property damage and injury than angle 
crashes, angle crashes were generally more severe: 6,275 vehicle occupants died in left or right-side 
angle crashes in 2015 compared to 1,480 vehicle occupants killed in rear collisions in the same year.viii  
Another 450,000 vehicle occupants were injured in angle crashes in 2015, compared to 650,000 vehicle 
occupants injured in rear collisions.ix  
 
The most common type crash at Philadelphia intersections are angle crashes, which account for 50% of 
all crashes (followed by rear-end crashes, which account for 15% of all crashes). Angle crashes are also 
the second most fatal type of intersection crashes, accounting for 35% of all fatal crashes behind crashes 
in which a vehicle hit a pedestrian. 
 
From 2012 to 2016, 857 crashes at Philadelphia intersections resulted in a fatality or major injury, 
accounting for 44% of all crash fatalities in Philadelphia. Broken down by mode, intersection crashes in 
Philadelphia accounted 53% of all pedestrian fatalities, 41% of bicycle rider fatalities, and 40% of vehicle 
occupant fatalities. In all, 218 pedestrians, 7 bicycle riders, and 115 vehicle occupants were killed in 
crashes at Philadelphia intersections between 2012 and 2016. Table 1 provides a detailed breakdown of 
Intersection Crashes by Crash Type and Crash Severity in Philadelphia from 2012 to 2016.  
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        Table 1: Intersection Crashes by Crash Type and Crash Severity 

 
 
Intersections, therefore, are some of the most dangerous places to be a pedestrian in Philadelphia, and 
are almost as dangerous for vehicle occupants and bicycle riders. Although PennDOT’s 2012-2016 data 
does not include information on whether a crash was related to running a red light, red-light running 
(RLR) remains a dangerous practice throughout the United States and there is no reason to expect that 
Philadelphia is in some way an exception. 
 
The Pennsylvania Department of Transportation (PennDOT) compiles information on car crashes in 
Philadelphia County and makes it publicly available online. This report uses car crash data from 
Philadelphia County between 2002–2015. ARLE camera enforcement began in Philadelphia beginning in 
2005, and new cameras at new locations have been installed as recently as 2015. Per Mike’s request, 
this analysis needed to look at ARLE locations with data for the three years preceding red light camera 
enforcement and the three years following red light camera enforcement. For this reason, locations 
installed after 2013 were excluded from the dataset.  This resulted in 26 individual locations for analysis: 
 

1. Grant Avenue & Roosevelt Boulevard 
2. Red Lion Road & Roosevelt Boulevard 
3. Cottman Avenue & Roosevelt Boulevard 
4. Broad Street & Oregon Avenue 
5. Mascher Street & Roosevelt Boulevard 
6. Levick Street & Roosevelt Boulevard 
7. Rhawn Street & Roosevelt Boulevard 
8. Welsh Road & Roosevelt Boulevard 
9. Southampton Road & Roosevelt Boulevard 
10. 34th Street & Grays Ferry Avenue 
11. 9th Street & Roosevelt Boulevard 
12. Broad Street & Hunting Park Avenue 
13. 58th Street & Walnut Street 
14. JFK Boulevard & Broad Street 
15. South Penn Square & Broad Street 
16. Aramingo Avenue & Castor Avenue 
17. Aramingo Avenue & York Street 
18. Henry Avenue & Walnut Lane 
19. Rising Sun Avenue & Adams Avenue 
20. Broad Street & Vine Street 
21. Island Avenue & Lindbergh Boulevard 
22. Grant Avenue & Academy Road 
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23. Bustleton Avenue & Byberry Road 
24. Knights Road & Woodhaven Road 
25. Knights Road & Woodhaven Road 
26. Byberry Road & Worthington Road 

 
Because each intersection is a different size and some are irregular shapes (especially intersections on 
Roosevelt Boulevard with diagonal crossings), a universal buffer around each intersection would not 
accurately represent crashes at ARLE locations. Data for each intersection was therefore individually 
selected from the PennDOT data and coded to its intersection. 
Using information on enforcement date provided on page 11 of PennDOT’s 2017 ARLE report, I isolated 
crashes for three years before and after enforcement for each of the 26 ARLE intersections and coded 
each crash as either pre-ARLE (o) or post-ARLE (1) to create a binary variable for testing.  
The final dataset, which consists of crashes at the 26 ARLE intersections for the 3 years preceding and 3 
years following ARLE implementation at each intersection, contains 1,244 independent observations, 
each of which is one crash. Each crash observation has the following variables: 
 

• FID –  an ID number assigned to each point in GIS 
• CRN – Crash record Number 
• CRASH_YEAR – Year in which the crash occurred, ranging from 2002 to 2015 
• CRASH_MONTH –  Month in which the crash occurred, ranging from 1 to 12 
• DAY_OF_WEEK –  Day on which the crash occurred, ranging from 1 to 7 
• TIME_OF_DAY – Time at which crash occurred, in 24-hour time 
• ARLE – a binary variable for which 0 indicates the crash occurred pre-ARLE enforcement and 1 

indicates the crash occurred port-ARLE enforcement. 
• UUID – An identifier mapping each crash to a specific intersection, ranging from 1 to 26 
• FATAL - a binary variable for which 0 indicates the crash resulted in no fatalities 1 indicates the 

crash resulted in at least one fatality. 
• INJURY - a binary variable for which 0 indicates the crash resulted in no injuries of any severity 

and 1 indicates the crash resulted in at least one injury of any severity. 
• MAJ_INJURY - a binary variable for which 0 indicates the crash resulted in no major injuries and 

1 indicates the crash resulted in at least one major injury. 
• COLL_1 - a binary variable for which 0 indicates the crash was not a rear-end collision and 1 

indicates the crash was a rear-end collision. 
• COLL_4 - a binary variable for which 0 indicates the crash was not an angled collision and 1 

indicates the crash was an angled collision. 
• MIN_INJURY - a binary variable for which 0 indicates the crash resulted in no minor injuries and 

1 indicates the crash resulted in at least one minor injury. 
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2. METHODS 
2.1 Problems with OLS Regression if the Dependent Variable is Binary 

OLS regressions works well with a continuous dependent variable (Y), but becomes an ineffective 
predictive tool if the dependent variable (Y) is binary. A binary Y variable means that the value of Y 
can be either 0 or 1. Because OLS regression is interpreted as a 1 unit increase in the predictor (x1) 
= a β1 increase in Y, Y can only change from 0 to 1 or 1 to 0 if the dependent variable (Y) is binary. In 
this situation, the increase in Y by β1 makes no sense, and OLS regression fails. Logistic regression 
offers a way to work around this issue by translating OLS regression results into odds, and then 
transforming those odds into an interpretable result using a log transformation. 
 

2.2 Solving the Problem with Logistic Regression 
Logistic regression depends on the concept of odds, which allows us to easily interpret the probability 
of a relationship between the dependent variable and its independent variable(s). In probability, we 
calculate the number of desirable or undesirable outcomes by dividing by the total number of 
outcomes. Using a linear method to calculate probability, however, results in numbers that don’t make 
any intuitive sense, including negative probabilities. This is because probabilities need to range 
between 0 and 1, but linear regression predicts values of Y that range between -∞ and +∞. We use 
logistic regression to solve this problem. 
 
To calculate odds, we divide the desirable and undesirable outcomes by one another. For example, if 
there are 100 zip codes and 80 of them have hospitals, the probability of finding a zip code with a 
hospital is 80/100 = 0.8. The odds of finding a hospital are 80/20 = 4. As the probability increases, the 
odds increase and vice versa. While probability ranges from 0 to 1, odds range from 0 to +∞. 
 
Mathematically, the odds of an event (Y = 1) can be calculated using the following equation:  
 

 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌 = 1) =

# 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
# 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
# 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
# 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

 

=
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑌𝑌 ≠ 1)

=
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑌𝑌 = 0)

=
𝑃𝑃(𝑌𝑌 = 1)

1 − 𝑃𝑃(𝑌𝑌 = 1)
=

𝑝𝑝
1 − 𝑝𝑝

 

1 

 
Odds can be transformed to the log of odds through a logarithmic transformation, where the larger the 
odds, the greater the log of odds. Taking the log of the odds allows us to take a value from - ∞ to + ∞ 
and return a value from 0 to 1. When the log odds are exponentiated, an odds ratio that ranges from 
0 to + ∞ is derived.   
 
The assumptions of the logistic regression are like those of OLS regression, with a few differences. In 
logistic regression, the dependent variable must be binary. Like OLS regression, there should not be 
severe multicollinearity. Unlike OLS regression, Logistic Regression requires at least 50 observations 
per predictor because the regression coefficients are estimated using the maximum likelihood 
methods (MLE) and not least squares. As in OLS, multicollinearity in Logistic Regression can be 
calculated using Pearson’s correlation between all the predictors. Finally, logistic regression does not 
assume a linear relationship between the dependent and independent variables, homoscedasticity, or 
the normality of residuals. 
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2.3 Hypothesis for Each Predictor 
Before performing any in-depth analysis, I looked at the correlation between the dependent ARLE 
variable and the predictor variables: INJURY, FATAL, MAJ_INJURY, UUID, COLL_1, COLL_4, AND 
MIN_INJURY.  

ARLE, INJURY, FATAL, MAJ INJURY, COLL_1, COLL_4, and MIN_INJURY are all binary data sets, 
while UUID is cardinal. As such, a cross tabulation between the dependent variable and all binary 
predictors is used to evaluate the binary predictors. Because we have a before and after scenario 
(pre-ARLE and post-ARLE) paired t-tests are an appropriate method of analysis. For a paired t-test, 
each dependent variable is split into two categories: pre-ARLE and post-ARLE. These two groups are 
then compared, and we can either reject each dependent variable’s Null Hypothesis or fail to reject 
each dependent variable’s Null Hypothesis: 
 

• H1 Null: There is no difference in the average proportion of crashes with fatalities before 
and after ARLE. 

• H1 Alt: There is a difference in the average proportion of crashes with fatalities before 
and after ARLE. 
 

• H2 Null: There is no difference in the average proportion of crashes with major injuries 
before and after ARLE. 

• H2 Alt: There is a difference in the average proportion of crashes with major injuries 
before and after ARLE. 
 

• H3 Null: There is no difference in the average proportion of crashes with minor injuries 
before and after ARLE. 

• H3 Alt: There is a difference in the average proportion of crashes with minor injuries 
before and after ARLE. 
 

• H4 Null: There is no difference in the average proportion of rear-end crashes before and 
after ARLE. 

• H4 Alt: There is a difference in the average proportion of rear-end crashes before and 
after ARLE. 
 

• H5 Null: There is no difference in the average proportion of angle crashes before and 
after ARLE. 

• H5 Alt: There is a difference in the average proportion of angle crashes before and after 
ARLE. 

 
If the p-value is less than 0.05, we reject the null hypothesis for the alternative. For this analysis, each 
paired t-test was performed twice: one on dependent variables as raw data, and once on dependent 
variables as proportions of all crashes.   
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3. RESULTS 
3.1 Paired t-Test Results 
 

The results for all paired t-tests are shown in Tables 2 and 3 below: 
 

          Table 2: Paired t-test results with dependent variables as raw data 

HYPOTHESIS VARIABLE T-STATISTIC P-VALUE OUTCOME 

H1 
No Fatal Injury 

0 0.5 Fail to reject the Null Hypothesis 
Fatal Injury 

 H2 
No Major Injury 

-0.25351 0.599 Fail to reject the Null Hypothesis 
Major Injury 

H3 
No Minor Injury 

1.7489 0.04628 Reject the Null Hypothesis in favour of 
the Alternative Hypothesis Minor Injury 

H4 
Rear-End Crash 

-0.72509 0.7624 Fail to reject the Null Hypothesis 
Other Crash 

H5 
Angle Crash 

0.1853 0.4273 Fail to reject the Null Hypothesis 
Other Crash 

 

          Table 3: Paired t-test results with dependent variables as proportions of all crashes 

HYPOTHESIS VARIABLE T-STATISTIC P-VALUE OUTCOME 

H1 
No Fatal Injury 

-0.21126 0.5828 Fail to reject the Null Hypothesis 
Fatal Injury 

 H2 
No Major Injury 

-0.78588 0.7803 Fail to reject the Null Hypothesis 
Major Injury 

H3 
No Minor Injury 

2.0126 0.02752 Reject the Null Hypothesis in favour of 
the Alternative Hypothesis Minor Injury 

H4 
Rear-End Crash 

-1.3069 0.8984 Fail to reject the Null Hypothesis 
Other Crash 

H5 
Angle Crash 

-0.66737 0.7447 Fail to reject the Null Hypothesis 
Other Crash 

 
For H1, H2, H4, and H5 we fail to reject the null hypothesis and conclude that at these 26 
intersections, the proportion of crashes involving fatalities, major injuries a rear-end collision, 
and an angle collision are not significantly different pre- and post-ARLE.  
 
For H3, we reject the Null Hypothesis in favour of the Alternate Hypothesis and conclude that 
the proportion of crashes involving a minor injury are significantly different pre- and post-ARLE. 
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3.2 Regression Assumption Checks 
Unlike OLS regression, Logistic regression does not assume a linear relationship between the 
dependent variable and predictor variables, does not assume homoscedasticity, and does not 
assume normality of residuals. As such, no tests for these assumptions are required. 
 
Logistic Regression assumes that the Dependent variable is binary, and that assumption is met in this 
case. Logistic regression also assumes that you have 50 observations per predictor. This model has 
6 predictor variables, which means the data must have at least 300 observations. This data set has 
1,244 observations, so that assumption is also met.  Finally, Logistic Regression also assumes that 
there is no severe multicollinearity. Testing for multicollinearity requires looking at Pearson correlation 
for the dependent variable and each predictor variable. 
 
Pearson correlation measures the strength of the linear relationship between two variables. The value 
of the results of Pearson correlation always fall between -1 and +1, where -1 indicates a perfect 
negative relationship between the two variables, +1 indicates a perfect positive relationship between 
the two variables, and 0 indicates no linear relationship between the two variables (slope = 0).  
 
            - When 0 < R < 0.5, the variables x and y have a weak linear relationship. 
            - when 0.5 < R < 0.8, the variables x and y have a medium-strength linear relationship. 
            - When 0.8 < R < 1, the variables x and y have a strong linear relationship. 
 
The results of the Pearson correlation cross-table test for the predictor variables are shown in Table 5 
below: 

Table 4: Pearson Cross-Tabulation correlation table for predictor variables 

 FATAL MAJ_INJURY COLL_1 COLL_4 MIN_INJURY 
FATAL - -0.0112 -0.0409 -0.0376 -0.0455 

MAJOR INJURY -0.0112 - -0.0551 -0.0093 -0.0471 

COLL_1 -0.0409 -0.0551 - -0.5535 -0.5535 

COLL_4 -0.0376 -0.0093 -0.5535 - -0.0492 

MIN_INJURY -0.0455 -0.0471 0.0754 -0.0492 - 
 
 
These results indicate that there is no severe multicollinearity present in the predictor variables, 
which means they can all be used in our regression model without violating any assumptions. 
 
Because most our predictors are binary, Pearson correlation is not the best means of testing for 
collinearity. For a more rigorous statistical analysis, looking at the mean square contingency 
coefficient (the Phi coefficient) would be a better test. 
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3.3 Logistic Regression Results 
The table below shows the results of a logistic regression model that includes all predictor variables, 
binary and continuous, regardless of their Chi-Square performance: 

Table 5: Results of Logistic Regression Model with all predictors 
 

Estimate Std. Error z value Pr(>|z|) Sig 
Code OR 2.50% 97.50% 

(Intercept) 0.03855252 0.1606373 0.23999733 0.81033233 - 1.0393053 0.7586179 1.42494 

FATAL 0.05089141 0.6423282 0.07922961 0.93685 - 1.0522086 0.287403 3.849808 

MAJ_INJURY 0.04417151 0.4679884 0.09438592 0.9248026 - 1.0451616 0.4087444 2.63532 

COLL_1 0.34507398 0.1495474 2.30745634 0.02102939 * 1.4120944 1.0539302 1.894608 

COLL_4 0.19033589 0.1404683 1.35500907 0.17541467 - 1.2096558 0.9188508 1.593996 

MIN_INJURY -0.20897219 0.1281862 -1.63022351 0.10305427 - 0.8114178 0.63094 1.043014 

 

These results indicate that only the COLL_1 predictor variable is significantly related to the 
dependent variable ARLE. The significance is minimal.   
 
In this model, we can say that a 1 unit increase in a predictor variable corresponds to a (eβ1-1) * 
100% change in the odds of Y=1, holding the values of the other predictors constant. We can 
interpret the outcome for each significant predictor variable as follows: 
  

- The odds of a car crash occurring post-ARLE go up by (eβ1-1) * 100% = (e0.314004 - 1) * 100% = 
37% if the crash was collision type 1 (a rear-end collision), holding all other variables 
constant. 

 
4. CONCLUSIONS & NEXT STEPS 

This data set presents several challenges for testing: 
 

1. In some cases, as in the case of fatal crashes and crashes with major injuries, the data set 
has small values and is irregularly distributed. 
 

2. There is no control group to which ARLE intersections can be compared, so the actual 
change has no true point of comparison.  

Despite these challenges, this analysis does allow us to make some conclusions.  
 
The results of the Paired t-Tests are generally inconclusive. H3 has a significant result, indicating that 
there is a statistically significant difference in minor injuries between pre-AREL and post-ARLE, and 
that the difference is positive post-ARLE.  This fits the hypothesis that ARLE implementation may 
result in an increase in less-severe crashes. Unfortunately, because H1 and H2 are inconclusive, we 
do not have a full picture confirming this hypothesised trend.  H4 and H5 have p-values close to 1 
and therefore cannot be interpreted meaningfully. 
 
The logistic regression results indicate one important thing: crashes occurring post ARLE 
implementation are more likely to be rear-end collisions. These findings track with the expectation 
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that ARLE implementation might result in a higher overall incidence of crashes, especially rear-end 
crashes, but that the severity of crashes will be lessened. 
 
Because none of the other predictor variables were significantly related to the dependent variable, 
drawing conclusions from their results in Table 4 would be questionable. In the case of the FATAL 
variable and the MAJ_INJURY variable, the issue is likely that the data sets are so small: as Table 2 
showed, only 10 crashes total resulted I fatalities at all ARLE locations between 2002 and 2015, and 
only 19 resulted in a major injury.  

 
It is surprising that the COLL_4 variable did not have any significant relationship to the dependent 
variable: one of the central arguments for ARLE implementation is the program’s potential to 
decrease the rate of angle crashes at high-volume and dangerous intersections. In the case of the 
present data set, ARLE implementation and Angle crashes do not appear to have a statistically 
significant relationship.  
 
It might be worthwhile to look at data for 5 years pre- and post-ARLE in a future analysis to try and 
get a larger data set. Because fewer intersections have 10 years of data to look at, however, the 
data set might not change dramatically in size, and the data would be (generally) older.  
 
It would also be appropriate to find intersections that technically meet the criteria for ARLE but do 
not have any red-light cameras and use them as a control group, like the analysis undertaken in the 
PennDOT Pennsylvania Automated Red-Light Enforcement 2017 Program Evaluation.  
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